
CASTE: A class system for Tcl �

Michael S. Braverman

571 Evans Hall

University of California

Berkeley, CA 94720

braver@cs.berkeley.edu

Abstract

This paper introduces CASTE (Classes, A Sensible Tcl

Extension), a class system for Tcl that, in its simplest

form, enables the creation and manipulation of struc-

tured objects, but more generally provides an entire

object-oriented class mechanism with the inheritance

of slots and methods. Methods may be defined either

in Tcl or C. CASTE is largely modeled after the behav-

ior of “standard-class” classes and “standard-object”

objects in CLOS, the Common Lisp Object System

[1]. However, unlike CLOS, in which methods are in-

voked via the application of generic functions, meth-

ods in CASTE are invoked using a message passing

paradigm that is more consistent with the syntax and

semantics already used by Tcl/Tk for interactions with

its built-in classes. CASTE supports the development

of class libraries, with class definitions “auto-loaded”

on an as-needed basis. The system is both efficient

and flexible, and experience with it has demonstrated

its ability to promote software re-use in Tcl.

1 Introduction

Tcl currently provides limited facilities for managing

structured data objects. While arrays and lists can be

used to group heterogeneous data, using them to sim-

ulate structured objects typically requires the manipu-

lation of global variables throughout a program, mak-

ing such programs unnecessarily complex and error-

prone. This paper introduces CASTE (Classes, A Sen-

sible Tcl Extension), a class system for Tcl that, in

its simplest form, enables the creation and manipula-

tion of structured objects, but more generally provides

�This material is based in part upon work supported by the Na-

tional Science Foundation under Infrastructure Grant No. CDA-

8722788.

an entire object-oriented class mechanism with the in-

heritance of slots and methods, including before, after,

and around daemon methods. The inheritance mech-

anism greatly enhances the possibilities for software

re-use in Tcl. In particular, it facilitates the develop-

ment of families of user interfaces that share common

properties; a programmer need only write methods

specific to the application at hand without having to

construct the entire interface from scratch.

CASTE is largely modeled after the behavior of

“standard-class” classes and “standard-object” ob-

jects in CLOS, the Common Lisp Object System [1].

CASTE follows CLOS’s “standard” policies for resolv-

ing multiple inheritance in the class hierarchy, for

determining the default initialization of slot values,

and for ordering method invocations when more than

one method may apply to a given object. However,

unlike CLOS, in which methods are invoked via the

application of generic functions, methods in CASTE

are invoked using a message passing paradigm that is

more consistent with the syntax and semantics already

used by Tcl/Tk for interactions with its built-in classes

(canvases, menus, etc: : :).

CASTE is implemented in C and has been used to

build several projects. One of these projects, a sim-

ple proof-tree browser and editor, demonstrates the

utility of inheritance. For example, proof-tree nodes

can be drawn as rectangles, circles, or ovals. When

a node is selected, control points are displayed on

the corners of its bounding box. Rather than writing

separate code for all three shapes of objects, an ab-

stract class corresponding to objects with rectangular

bounding boxes was created and methods for the dis-

play and manipulation of control points for that class

were defined. A specific class, inheriting from the

abstract class, was defined for each node shape. Each

of these shape-specific classes has methods tailored

> defclass node f

x

y

sheet
g

node

> node

node1

> node1 set y 4

4

> node1 set y

4

> node1 y

4

> node? node1

1

> node1 destroy

> node1

invalid command : : :

> node? node1

0

> defmethod fnode mult yg ffactorg f

puts "Hi, I’m $self."

return [expr $factor*[$self y]]

g

> node1 mult y 10

Hi, I’m node1. printed

40 value returned

(a) (b) (c) (d)

Figure 1: Class and Method Definition

to its type of outline, but the common operations on

control points are handled automatically via inheri-

tance. Three other significant applications have also

been developed using CASTE: a 2D structured draw-

ing program, an interactive 3D modeling program,

and a hypertext system[2]. All three of these appli-

cations share a common interface that was defined at

an abstract level using the class system. Application-

specific characteristics of each interface were specified

by simply writing application-specific methods.

2 System Overview

There is insufficient space in a paper of this length

to describe, comprehensively, all of CASTE’s features.

Instead we will illustrate, in terms of three examples,

the system’s principal characteristics. In the figures

that follow, expressions that a user might send to a Tcl

interpreter are prefixed with a > and appear in a bold

font; values that are returned or are printed appear in

a sans-serif font. It is assumed that the reader has a

basic understanding of object-oriented programming

and, of course, programming in Tcl.

2.1 Class and method definition

CASTE may be used merely to define and manipulate

structured objects. Figure 1a illustrates the use of

defclass to define a class named node whose objects

are to contain three slots named x, y, and sheet. In

addition to defining the slots of the class, defclass

also creates a Tcl command named node that may be

invoked to create an instance of the node class and a

command named node? that will test if an object is

an instance, or sub-instance, of that class. The value

returned from the node command will be a string of

the form node<N> (<N> some integer), which will

serve as a handle for the object.

By default, the node class will have a number of

methods defined for slot access. The simplest of these

is set. Like the Tcl set command, if no value is sup-

plied, then the current value of the indicated slot is

returned. As a convenience, slot reading methods,

with the same names as the corresponding slots, are

automatically defined. The creation of a node ob-

ject and the use of these methods are illustrated in

Figure 1b.

Normally an object will exist for the lifetime of

the Tcl interpreter in which it was created. However,

if an object is no longer needed, its storage may be

reclaimed by “sending” it the destroy method, as in

Figure 1c.

Custom methods for a class are defined with the

defmethod command. Figure 1d demonstrates the

definition and use of a method named mult y on the

node class; this method takes a single argument named

factor. When a method is invoked, the local variable

self is automatically bound to the handle of the object

to which the method was passed.

2.2 Inheritance, initialization, and daemons

Figure 2a shows how a more specific class named

s node, with two additional slots named shape and

contents, could be defined to inherit from the node

class. This class definition differs from that in Fig-

ure 1a in three important ways. First, rather than hav-

ing a class name appear after the defclass command,

a list of class names appears. The first of these is the

name of the class that is being defined and the sub-

sequent names, called the direct super-classes (there

is only one in this example), are those classes from

which the class being defined should directly inherit.

The defined class will indirectly inherit from all those

classes from which the direct super-classes inherit.

The order of the class names is used to compute the

global inheritance order of the class hierarchy. Gen-

> defclass fs node nodeg f

fshape init "abstract"g

contents

g –slot args
s node

> s node –shape round

s node1

> s node1 shape

round

> s node

s node2

> s node2 shape

abstract

> s node2 set y 3

3

> s node2 y

3

> defmethod fs node mult y beforeg ffactorg f

$self export y

puts "Running Before"

incr y 5
g

> defmethod fnode mult y afterg ffactorg f

puts "Running After"

g

> s node2 mult y 10
Running Before printed

Hi, I’m s node2. printed

Running After printed

80 value returned

(a) (b) (c)

Figure 2: Simple Inheritance, Initialization, and Method Daemons

erally speaking, classes are listed in left to right order

from most specific to least specific. Thus, methods

and slots of s node will shadow those of node and

any classes from which node might inherit.

The second and third significant differences in the

defclass statement are related: the presence of the

–slot args option at the end of the statement and the

manner in which the shape slot is defined. Rather

than just having its name appear, there is a list speci-

fying the optional init attribute of the shape slot. The

init option specifies a default expression that may be

evaluated (in the global environment) at object cre-

ation time to initialize the slot. The –slot args option

arranges for the node object creation command to al-

low initialization arguments for the slots specified in

the defclass statement. These arguments will have the

same name as the corresponding slot, except with a “–”

prepended to the slot name. Thus, the arguments will

look like the switches that are used to initialize Tcl/Tk

widgets. If an initialization argument is used when

creating an object, its value will take precedence over

that specified by any init option for the same slot;

in this case, the init option’s expression will not be

evaluated since it may potentially have side-effects.

Figure 1b should clarify this discussion. First

s node1 is created using the –shape argument with

the value round; hence, its shape slot has the value

round. Next, s node2 is created without the –shape

argument, and so the init option is used to initialize

the slot, giving it the value abstract. Note that the

x, y, sheet, and contents slots are unbound for both

s nodes because no initializations were specified for

them. These slots can be set and read in the usual man-

ner, as shown in the figure, after the object is created.

Mechanisms exist in CASTE for the inheritance of slot

initializations, for creating initialization arguments for

only a subset of a class’s slots, and for generating ini-

tialization arguments that are named differently than

the slots themselves, but space does not permit their

description here. CASTE also allows the definition of

initialization arguments that may be used to do more

than just set an object’s slots. This feature will be

discussed in section 2.3.

Figure 2c illustrates the definition of before and

after daemon methods. A method defined in the

usual manner, as in Figure 1d, is called a primary

method. When an object is passed the name of a

method, the most specific primary method with that

name is invoked.1 However, when the primary method

is invoked all the associated before and after methods

are run before and after the primary method, respec-

tively, in an order determined by the inheritance hier-

archy. Whether or not before or after methods exist,

the value returned for a particular method invocation

is that which is returned from the primary method.

Thus, in Figure 2c, a before method is defined for

the mult y method (earlier defined in Figure 1d) on

the s node class. An after method is also defined

for mult y, but it is specified on the superclass node.

Thus, node objects will “see” only the after method,

whereas both the before and after methods will be run

for s node objects. A third type of daemon method,

the around method (not demonstrated here), can be

defined to modify the value returned by the primary

method or to selectively keep the primary method and

1The primary method, if it wants, may use a command named

call next method to invoke the method that it is immediately

shadowing in the class/method hierarchy. The predicate com-

mand exists next method? may be used to determine if there is a

shadowed method to call.

> defclass nodeset f

fnodes init fgg

g –slot argsn

finit args –xpos –yposgn
farg defaults –xpos 50 –ypos 70g

nodeset

> defmethod fnodeset initialize afterg finitsg f

parse inits into f–xpos xp –ypos ypg $inits
foreach node [$self nodes] f

$node set x $xp y $yp

g

g

> defmethod fnodeset destroy beforeg fg f

foreach node [$self nodes] f$node destroyg
g

> nodeset –nodes fs node1 s node2g –xpos 100

nodeset1

> s node1 x

100

> s node1 y

70

> nodeset1 destroy

> nodeset1

invalid command name "nodeset1"

> s node1

invalid command name "s node1"

> s node2

invalid command name "s node2"

(a) (b)

Figure 3: Customizing Initialization and Destruction

its associated before and after methods from being

invoked.

The definition of the mult y before method also

demonstrates the use of the export method. This

method allows a procedure to map between an object’s

slots and local variables in the current scope. This

mapping ability allows a program to have extended

direct access to a slot without the overhead associated

with the repeated invocation of slot accessor methods.

Hence, given that the y slot of s node2 was set to 3

(in Figure 2b), when the mult y method is invoked

with the argument 10, the before method is first run,

incrementing the y slot of s node2 to 8, and, thus, the

value returned from the primary method, following

the execution of the after method, is 80.

2.3 Custom initialization and destruction

When a CASTE object is created, its slots are first

allocated and then the object is initialized using a

pre-defined method named initialize. Normally, as

described earlier, this method initializes slots accord-

ing to the initialization arguments passed to the object

creation command and, in their absence, uses the init

option in the individual slot definitions to determine

the initial values of the slots. Later, if a destroy mes-

sage is sent to an object, the object and its slots are

simply deallocated. Sometimes, however, this default

behavior is insufficient. For instance, it is often useful

to pass initialization arguments that do not simply set

the value of a slot of the object being created. Sim-

ilarly, certain cleanup operations may have to be run

before an object is destroyed. The default behavior of

object initialization and destruction may be modified

through the definition of daemon methods.

Consider the nodeset class defined in Figure 3a.

Objects of this class will contain a single slot, nodes,

whose initial value defaults to the empty list. The

class definition uses the –slot args option to define

an initialization argument for the slot, but it also de-

clares two additional initialization arguments, –xpos

and –ypos, using the defclass option named init args.

Further, the class definition uses another defclass op-

tion, arg defaults, to specify default expressions to

associate with –xpos and –ypos should these argu-

ments not be passed at object creation time.

Following the class definition, an after method for

initialize is defined on the nodeset class. When the

nodeset object creation command is invoked, the sin-

gle inits argument will be bound to the list of ini-

tialization arguments (if any) that are passed. The

parse inits into command parses out the requested

initialization arguments and binds local variables to

their associated values. If a requested argument is not

passed, then parse inits into will consult the default

values defined by arg defaults in the class definition.

Figure 3b illustrates the modified initialization be-

havior for nodeset objects. First, the object cre-

ation command is called with the two initialization

arguments –nodes and –xpos, creating the object

nodeset1. Since the initialization method in Figure 3a

is an after method, the default initialization method

will be run before it is executed, and so the nodes

slot of nodeset1 will already be initialized in the usual

manner before it starts. The after method then loops

through the nodes in nodes setting their x and y slots

according to the values associated with –xpos and

–ypos. Since –ypos was not passed to the object cre-

ation command, its value is taken from that specified in

the arg defaults option. Hence, we find, in Figure 3b,

that the x and y slots of s node1 (and s node2, for that

matter) have the values 100 and 70, respectively, after

nodeset1 is initialized.

Figure 3b also demonstrates the effect of the

nodeset destroy before daemon method. After

nodeset1 is destroyed, we find that s node1 and

s node2 were also destroyed per the instructions in

the before daemon method.

3 Efficiency and Flexibility

CASTE was designed not only to simplify program-

ming in Tcl, but also to be efficient. At the time that

a class or a new method for a class is defined, the in-

heritance hierarchy for the class and the concomitant

ordering of its methods, along with that of their be-

fore, after, and around daemons, are cached. Hence,

the time needed for object creation and method invo-

cation is independent of the size and complexity of the

class hierarchy. Measurements on the current CASTE

implementation indicate that slot access via methods

takes roughly one and a half to twice the time of a di-

rect set command on a regular Tcl variable. However,

this overhead can be eliminated using methods such as

export (described in section 2.2). Greater efficiency

may also be achieved by defining methods directly in

C. CASTE provides a C function, defCmethod, that

allows the programmer to register a standard Tcl/C

call-back function as a method for use in a particular

interpreter.

CASTE is very flexible, allowing methods and

classes to be defined in any order. The only require-

ment is that all the super-classes of a class be defined

before attempting to create an object of that class. All

classes implicitly inherit from a “top” class named

T. Default methods for all classes are specified in

CASTE by defining methods on the T class. As a re-

sult, the user may replace, or modify the behavior (via

method daemons) of any or all the default methods

supplied, as with the example in section 2.3. Er-

ror events (e.g., writing to undefined slots or reading

from unbound slots) are also handled within the class

system via methods; hence, class specific handling

of errors is possible by merely writing custom error

handler methods to shadow the system defaults. A

complete list of the default methods, grouped roughly

according to function, is provided in Table 1.

4 Tcl/Tk Compatibility

As with procedure definitions in Tcl, classes and meth-

ods may be defined and later redefined in the same

interpreter. Classes dependent on those redefined are

automatically updated by the system.

A Tcl program may use the slot ref method to gain

direct access to an object’s slot via a global vari-

able. This feature allows Tcl to trace operations on

slots. By extension, it also allows Tk widgets, such as

checkbuttons, to effectively use a slot as a referent in

a –variable option.

For complete compatibility, CASTE will allow the

programmer to provide a desired handle name when

creating an object. As a result, object creation can be

made to look exactly like that for Tk widgets. More-

over, the cinfo method can provide the default initial-

ization for any given slot of an object. Together, the

cinfo and set methods can be used to define a config

method, providing access to slots with a syntax com-

pletely consistent with that used with Tk widgets.

CASTE is implemented so as to require no modifi-

cations to the standard Tcl distribution code. A Tcl

interpreter may be extended to use CASTE by simply

calling, from C, the single function Init Caste and

passing a pointer the interpreter’s Tcl Interp struc-

ture. A slight change to Tcl’s auto mkindex proce-

dure allows CASTE to provide class libraries that are

“auto-loaded” on an as-needed basis.

5 Conclusion and Future Directions

This paper has presented an overview of CASTE, a

comprehensive class system for Tcl. The system is

both powerful and efficient and its syntax and se-

mantics integrate well with those already existing in

Tcl/Tk.

Future versions of CASTE will allow “class slots”,

wherein all instances of a given class will be able

to share one or more of their slots. This will allow

CASTE to subsume much of the functionality needed

by those who desire to have a “module” mechanism,

with shared private variables, in Tcl.

CASTE currently allows classes to be redefined, but

it does not update any existing objects that are in-

Method and Arguments Brief Description

initialize inits Initialize object according to inits list.

destroy Destroy object.

set [slot value]* slot [value] Set the slots to the corresponding values, returning

the last value or value of the last slot given.

append slot value [value]* Perform Tcl append operation on slot with values.

lappend slot value [value]* Perform Tcl lappend operation on slot with values.

unset slot [slot]* Unset the indicated slots.

slot bound? slot Return 1 or 0 depending if the slot is currently set.

export slot [slot]* map slots of object to local variables of the same

name

export to slot var [slot var]* map slots of object to the corresponding indicated

local variables

slot ref slot Return global variable that refers to slot.

print Print the values of all the object’s slots.

cinfo request [arg]* Return information concerning object’s class.

no applicable method umethod arglist Produce Tcl error: undefined method umethod
was applied with the indicated argument list.

no next method method arglist Produce Tcl error: call next method was called
and no method exists higher in the class hierarchy.

slot unbound slot Produce Tcl error: attempted to read unbound slot.

slot missing slot op [arg] Produce Tcl error: attempted to perform operation

[with the indicated arg] on an undefined slot.

Table 1: Default Methods

stances of the redefined class; only a warning is printed

if an outdated object is used. In the future, objects will

be automatically updated to the new class definition.

Finally, a default trace method, that is aware of

CASTE’s inner workings, needs to be defined so that

methods, rather than procedures, may be called when

accessing the slots of an object.

Acknowledgements

I would like to thank Narciso Jaramillo for using

CASTE to build a number of interesting applications.

His use of CASTE aided in the debugging process and

helped to point out deficiencies in the original design.

I would further like to thank him and Brian Smith

for useful suggestions concerning features that CASTE

should include.

References

[1] Steele, Guy L., Jr., Common Lisp: The Language.

2nd ed. Digital Press (1990), 770–864.

[2] Jaramillo, Narciso, personal communication.

